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Abstract
Random matrix theory has been widely applied in physics, and even beyond physics. Here, we
apply such tools to study catastrophic events, which occur rarely but cause devastating effects. It is
important to understand the complexity of the underlying dynamics and signatures of catastrophic
events in complex systems, such as the financial market or the environment. We choose the USA
S & P-500 and Japanese Nikkei-225 financial markets, as well as the environmental ozone system in
the USA. We study the evolution of the cross-correlation matrices and their eigen spectra over
different short time-intervals or ‘epochs’. A slight non-linear distortion is applied to the
correlation matrix computed for any epoch, leading to the emerging spectrum of eigenvalues,
mainly around zero. The statistical properties of the emerging spectrum are intriguing—the
smallest eigenvalues and the shape of the emerging spectrum (characterized by the spectral
entropy) capture the system instability or criticality. Importantly, the smallest eigenvalue could
also signal a precursor to a market catastrophe as well as a ‘market bubble’. We demonstrate in two
paradigms the capacity of the emerging spectrum to understand the nature of instability; this is a
new and robust feature that can be broadly applied to other physical or complex systems.

1. Introduction

Critical transitions or sharp changes, which are usually unpredictable, are ubiquitous in complex systems
found in nature and society—ranging from natural hazards, such as earthquakes, volcanic eruptions,
hurricanes, lightning strikes, extreme weather conditions due to global warming [1–3], failure of physical
and social structures due to large scale terror strikes [4, 5], market crashes and economic slowdowns,
electric grid failures, traffic breakdowns, disease and epidemic spreads, etc [6–13]. Such extreme events
often reveal underlying dynamical processes and thus provide ground for better scientific understanding of
complex systems like stock markets, fractures or earthquakes [14, 15], climate, etc. The detailed evolution of
complex systems may not have much significance; it may be more relevant to study certain phases of the
evolution, like the rare critical events. A forecasting or prediction algorithm may be required for answering
important questions related to rare events—predicting the occurrence of seismic events or temperature rise,
forecasting crashes or bubbles, etc. Recently, scientists have therefore focused their attention on identifying
generic indicators that may detect if a complex system is close to instabilities. Methods from self-organized
criticality [16], networks [17], random matrix theory (RMT) [18, 19], etc have been used extensively to
model and analyze such complex systems [20].
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RMT has been applied in various problems [21, 22] such as in many-body physics [23], disordered
systems and chaos [24], quantum chromodynamics [25], models for interacting fermions [26] and in other
fields beyond physics, including financial markets [27–32]. Besides traditional methods, the RMT was
proposed as a method for noise suppression in financial time series [33–35], which essentially proceeded as
follows: the correlation matrices were diagonalized by an orthogonal transformation and then the bulk of
the spectrum was eliminated; the inverse transformation reconstructed a singular correlation matrix with
zero eigenvalues corresponding to the number of eigenvalues retained minus one. The power mapping
introduced by Guhr and Kälber [36] was a less radical alternative; this was elaborated further in another
paper [37]. The latter paper emphasized that the main advantage of the power mapping was not to omit all
the information hidden in the statistics of the bulk. Using certain models, it was later demonstrated by
Guhr and Wirtz [38], that the smallest eigenvalues, in particular, carry lot of information, making the
highest eigenvalues and their eigenfunctions look like a rather rough approximation. Further applications of
the power mapping were shown, e.g., in references [39, 40] as well as in reference [41], when focusing on
data-sets of short time series in the financial sector. The interest in eigenvalues for sets of N time series of
length T, for N � T, were mainly focused on the largest one (representing the market mode) or some of the
larger ones (representing the market sectors), for the simple reason that there were only a few non-zero
eigenvalues left. In reference [42], the authors discussed the use of the power mapping to break the linear
dependence among the rows of the corresponding data matrices, leading to a large N − T + 1 dimensional
subspace with eigenvalues in the ensuing correlation matrices. The power mapping would lift this
degeneracy, even if the power was very close to unity. The resulting spectrum was well separated from the
original one and was named as emerging spectrum. For very small deviations from the power unity, analytic
results were given for Wishart matrices (white noise data) and numeric exploration of correlated Wishart
ensembles were given, as well. Recently, in the context of market states [41], an intermediate view on power
mapping for very short time series was adopted, where the significance of the largest eigenvalues were
retained but the noise reduction was linked to the determination of optimal clustering choices. Following
this idea, some extended studies have been recently done [19, 43–46].

Pharasi et al [19] had earlier studied the role of power mapping in noise suppression and detection of
‘market states’ using similarity measures between correlation matrices and corresponding multidimensional
scaling maps. Pharasi et al [45] had also briefly reviewed the role of random matrix theory in the studying
market dynamics, where they discussed the traditional Marcenko–Pastur distribution in WOE and CWOE,
as well as the statistical properties of the emerging spectra arising in WOE and CWOE after application of
power mapping.

Our overall aim is the detection of critical instabilities in complex systems using the emerging spectra. It
must be mentioned that there is a closely related paper by Rinn et al [47], which explores such
stabilities/instabilities in a dynamical way. It may also be mentioned that our approach to the analysis of
complex dynamics could potentially be used in many different contexts such as in biological, ecological, and
physiological systems [48–52].

In this paper, in the wider framework of RMT, we propose the usage of the shape of the ‘emerging
spectrum’ (characterized by the spectral entropy [53]) as a simple yet generic indicator of critical periods,
and the smallest eigenvalue as a signal for precursor to a market catastrophe and a market bubble.
Importantly, the indicator can be bench-marked against the Wishart orthogonal ensemble (WOE) and it
removes the arbitrariness of threshold, etc. We demonstrate its validity and robustness in two different
complex systems.

As paradigm we first choose the stock market, which is a fascinating example of a complex system
[54–56], where the coherent collective behavior of the economic agents and their repeated nonlinear
interactions, often lead to rich structures of correlations and time-dependencies [27–29]. The movements
in the market prices are often influenced by news or external shocks, which can result in the unforeseen and
rapid drop in the prices of a large section of the stock market, labeled as a market crash! On the contrary,
the widespread existence of bubbles in financial markets and extreme movements of price return series
often result from the unstable relationship between macroeconomic fundamentals of the economy and the
asset prices [57]. Since the societal impact of an extreme event like a market crash can be catastrophic [9,
58], the understanding of such events [59], the assessment of the associated risks [60], and possible
prediction of these events have drawn attention from all quarters: governments, industry participants and
academia.

Second, we choose to study environmental pollution [61, 62], which in the last few decades has reached
alarming levels! One major component is air pollution, where harmful or excessive quantities of substances
including gases and particles are introduced into earth’s atmosphere [63, 64]. According to the
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intergovernmental panel on climate change, top three most important air pollutants are carbon dioxide
(CO2), methane (CH4), and tropospheric ozone (O3) [65, 66]. The tropospheric O3 has been radically
worsening the pollution and changing the climatic behavior [64, 67]. The ozone pollution in the earth’s
environment is an example of a complex system—a product of complex interlinked networks of
relationships between humans interactions and non-living objects surrounding them, as well as the cycles
controlling the flows of chemical elements or compounds that support life and regulate climate. Polluting
actions of humans often result in positive feedback loops that are known to destabilize an environmental
system and drive it toward an extreme or critical state. We focus on the study of catastrophic instabilities in
the environmental ozone pollution vis-à-vis the financial market.

2. Methodology and results

Our method relies on the time evolution of the cross-correlation matrices for N time-series and the eigen
spectra over different time-epochs (of size M), as traditionally analyzed in RMT or in the analysis of
adaptive complex systems like financial markets [19, 41, 45, 68–70]. The market returns series are
constructed as ri(τ) = ln Pi(τ) − ln Pi(τ − 1), where Pi(τ) is the adjusted closure price of stock i on day τ .
Then the equal time Pearson correlation coefficients between stocks i and j is defined as
Cij(τ ) = (〈rirj〉 − 〈ri〉〈rj〉)/σiσj, where 〈. . .〉 represents the expectation computed over the time-epochs of
size M and the day ending on τ , and σk represents standard deviation of the kth stock evaluated for the
same time-epochs. We use C(τ) to denote the return correlation matrix for the time-epochs ending on day
τ .

For this type of analysis, one assumes stationarity of the underlying time series. As this assumption
manifestly fails for longer time series, it is often useful to break the long time series of length T, into n
time-epochs of size M (such that T/M = n). The assumption of stationarity improves for the shorter
time-epochs used. However, if there are N return time series such that N > M, this implies an analysis of
highly singular correlation matrices with N − M + 1 zero eigenvalues, which lead to poor statistics. This
problem can be avoided by using the non-linear ‘power mapping’, which was introduced to reduce noise
[36, 37, 42]. It breaks the degeneracy of the zero eigenvalues also named as zero modes [71]. Thus, we apply
a small non-linear distortion to the coefficients of the cross-correlation matrix: Cij → (sign Cij)|Cij|1+ε,
where ε = 0.01. This breaks the degeneracy of zero-eigenvalues, giving rise to the emerging spectrum near
zero [42, 71] and the smallest eigenvalues are often negative! We had earlier used the power mapping to
study the properties of markets and market states [19, 45]. Here, we would like to focus on the evolution of
the emerging spectra.

2.1. Financial market
For empirical data, we have used the adjusted closure price time series from the Yahoo finance database
[72], for two countries: United States of America (USA) S & P-500 index (for the period 02-01-1985 to
30-12-2016 consisting of T = 8068 trading days, and number of stocks N = 194) and Japan (JPN)
Nikkei-225 index (for the period 04-01-1985 to 30-12-2016 consisting of T = 7998 trading days and
number of stocks N = 165). We have included the stocks that are present in the index for the entire
duration. Note that we have T = 7897 trading days data for the Nikkei-225 index and T = 7998 trading
days data for 165 stocks; so we add zero entries corresponding to the missing index data for the entire
time-series (without affecting the results or conclusions). In figure 1(a), four correlation structures with
M = 200 days (non-singular matrices) are shown. Evidently, the correlation structure (along with the mean
market correlation μ(τ )) varies over time—the market has a highly correlated structure (with high mean
correlation) during the critical or crash epoch of 200 days ending on 22-09-2011, and an interesting
structure mixed with correlations and anti-correlations (with low mean) during a relatively calm epoch of
200 days ending 28-02-1985. At times, one can see that there are strong correlations within certain
stocks/sectors and anti-correlations with respect to other stocks/sectors (06-01-1988 and 01-09-2000); at
certain times, all the stocks/sectors are correlated, with the mean market correlation being very high
(critical periods). Figure 1(b) shows a cross-correlation matrix computed for short epoch of M = 20 days
ending on 08-07-1985. It has both correlation and anti-correlation present in the correlation pattern and
shows non-critical (normal) behavior of market. Figure 1(c) shows the eigen spectrum of the correlation
matrix of non-critical (normal) period, evaluated for the short time series of returns for the epoch of
M = 20 days ending on 08-07-1985, with the maximum eigenvalue λmax = 29.59 (not plotted). Inset of
figure 1(c) shows the emerging spectrum generated using power mapping (ε = 0.01) is a deformed
semi-circle, with the smallest eigenvalue λmin = −0.011. Figure 1(d) shows a critical (crash) period
correlation matrix, evaluated for the short time-epoch of M = 20 days ending on 15-09-2008. Its eigenvalue
spectrum is shown in figure 1(e) with the maximum eigenvalue λmax = 94.92 (not plotted). Inset of
figure 1(e) shows the emerging spectrum using power mapping (ε = 0.01), which is heavy-tailed
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Figure 1. USA market correlations and eigen spectra. (a) Schematic diagram showing four sample correlation matrices for
different time-epochs of M = 200 days ending on 28-02-1985, 06-01-1988, 01-09-2000, and 22-09-2011. (b) Non-critical
(normal) period cross-correlation matrix computed for short time series of M = 20 days ending on 08-07-1985. (c) Eigen
spectrum corresponding to (b). Inset: emerging spectrum using power mapping (ε = 0.01) is deformed semi-circular. (d)
Critical (crash) period cross-correlation matrix computed for short time series of M = 20 days ending on 15-09-2008. (e) Eigen
spectrum corresponding to (d). Inset: emerging spectrum using power mapping (ε = 0.01) is heavy-tailed Lorentzian-like. The
sectoral abbreviations are as follows: CD–consumer discretionary, CS–consumer staples, EG–energy, FN–financial, HC–health
care, ID–industrials, IT–information technology, MT–materials, TC–telecommunication services, and UT–utilities.

Lorentzian-like, with the smallest eigenvalue λmin = −0.014. Note, the insets of figure 1(c) and (e) elucidate
that the emerging spectra are considerably different—slightly deformed semi-circular/Lorentzian-like as the
market is normal/critical.

Figures 2(a) and (b) show the evolution of the emerging spectra for the USA and JPN markets,
respectively.

Figures 3(a) and (b) show the statistical time series analyses: (i) market returns r(τ), (ii) mean market
correlation μ(τ), (iii) smallest eigenvalue of the emerging spectrum λmin, (iv) t-value of the t-test, which
tests if lag-1 smallest eigenvalue λmin(τ − 1) has statistically significant effect with mean market correlation
μ(τ), and (v) spectral entropy SES. The mean of the correlation coefficients and the smallest eigenvalue in
the emerging spectra are correlated (∼0.6) to a large extent. Notably, the smallest eigenvalue behaves
differently (sharply rising or falling) at the same time when the mean market correlation is very high
(crash). It is evident that for the USA, from 2001 onward, the financial market has become more turbulent
and in case of JPN, from 1990 onward.
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Figure 2. Evolution of emerging eigen spectra for identification of catastrophic instabilities. (a) USA and (b) JPN.

2.2.1. Linear regression model for market correlation on lagged smallest eigenvalue
In order to test the statistical significance of the correlation between last day’s (lag-1) smallest eigenvalue
λmin(τ − 1) and the current day’s mean market correlation μ(τ), we consider a linear regression model for
μ (mean market correlation):

μ(τ) = β0 + β1λmin(τ − 1) + β2λmin(τ − 2) + . . .

+ βpλmin(τ − p) + ε(τ),

where the β’s are the coefficients to be estimated, ε ∼ N(0,σ2), τ = 0, 1, 2, . . . , T is the white noise, and
λmin(τ − p)’s are the lag-p smallest eigenvalues. The choice of p is arbitrary to some extent. We tried with
values p = 1, 2, . . . , 5. For p = 1 and 2, we observed that almost all t-values are overwhelmingly large,
especially because we considered a moving window approach. In the cases of p = 1 and p = 2, due to
significant overlap over the windows, the large t-values resulted in too many false positives. On the other
hand, when we chose p = 3 and above, the overlap between the windows reduced. As a result, the t-values
become moderate as compared to p = 1 and 2 (see figure S6 in the supplementary information:
http://stacks.iop.org/NJP/22/063043/mmedia). We also observed that the predictive powers for p = 3, 4 and
5 remained similar. Hence, we chose p = 3 as a parsimonious model choice.
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Figure 3. Evolution of the statistical properties of the financial return series for identification of crashes. (a) USA and (b) JPN:
(i) market returns r(τ), (ii) mean market correlation μ(τ), (iii) smallest eigenvalue of the emerging spectrum λmin, (iv) t-value of
the t-test, which tests if lag-1 smallest eigenvalue λmin(τ − 1) has statistically significant effect over mean market correlation
μ(τ), and (v) spectral entropy SES. The spectral entropy SES acts as the indicator and reflects the shape of the emerging spectra:
high, when the shape resembles the semi-circular Wigner distribution (similar to WOE in red dash) and low, when the shape
resembles Lorentzian-like. The SES is undefined (indicated by pink vertical line) for the epoch that is heavy-tailed Lorentzian-like,
which corresponds to a crash (catastrophic instability).

So, the null hypothesis and the alternate hypothesis can be stated mathematically as:
H0 : β1 = 0 vs HA : β1 �= 0.

The t-value for estimated β̂1 is calculated as

t =
β̂1 − 0

se(β̂1)
,

where se is the standard error in statistics. If |t − value| > 2, we can say that the last day’s smallest
eigenvalue (λmin(τ − 1)) has statistically significant effect over today’s mean correlation (μ(τ )). The t-value
itself signifies the strength of the signal and shown in figures 3(a) and (b). It seems that for most of the
time, the correlation is statistically significant at 2σ levels or higher. The only periods when the λmin(τ − 1)
fails to detect with high significance, are the broad periods 1990-91, 2000-02, etc, which act like
bubbles/anomalies—the ‘Dot-com bubble’, ‘Housing bubble’, etc. Thus, smallest eigenvalue of the
emerging spectrum can be effectively used for the characterization of market crashes and as a signal for
market bubbles.

We run the kernel density estimate to evaluate the normalized probability distribution function of the
eigenvalues around zero (emerging spectrum), and compute the probabilities {pi}. We define the entropy of
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Table 1. List of major crashes and their characterization.

Sl. no Major crashes and bubbles Period date Region affected

1 Black Monday 19-10-1987 USA, JPN
2 Friday the 13th mini crash 13-10-1989 USA
3 Bond market crisis 1994 JPN, USA
4 Dot com bubble 1994–2000 USA, JPN
5 Asian financial crisis 02-07-1997 JPN, USA
6 Russia devalues ruble 07-08-1998 USA
7 9/11 Financial crisis 11-09-2001 USA, JPN
8 Stock market downturn of 2002 09-10-2002 JPN, USA
9 US housing bubble 2005–2007 USA
10 Lehman brothers crash 16-09-2008 USA, JPN
11 DJ flash crash 06-05-2010 USA, JPN
12 Tsunami/Fukushima 11-03-2011 JPN
13 August 2011 stock markets fall 08-08-2011 USA, JPN
14 IPO facebook debut 18-05-2012 USA, JPN
15 Flash freeze 22-08-2013 USA, JPN
16 Treasury freeze 15-10-2014 USA, JPN
17 Chinese black monday 24-08-2015 USA
18 Brexit 20-06-2016 USA, JPN

emerging spectrum SES = −
∑

i pi ln pi, and use it to characterize the shape of the this spectrum. The shape
of the emerging spectra is quantified by the SES. When the system changes from normal to critical periods,
the shape (distribution) of the emerging spectra changes from distorted Wigner semi-circle to heavy-tailed
Lorentzian-like shape; the value of SES changes from low (normal) to high (critical). We take the mean SES

for the WOE of equivalent size N, as benchmark. The spectral entropy SES reflects the shape of the emerging
spectra: high, when the shape resembles semi-circular Wigner distribution (red dash) and low, when the
shape is Lorentzian-like. The SES is undefined (indicated by pink vertical line) for the epoch that is
heavy-tailed Lorentzian, which corresponds to a crash (catastrophic instability). The list of the major
crashes is given in table 1. These features could shed light on detection of market anomalies/instabilities and
designing appropriate market strategies, etc.

2.2. Environmental ozone pollution
We use the data of ozone pollution [73] with daily 8 h maximum ground level ozone pollution from 1
January 2012 to 31 December 2017 (T = 2192 days) monitored from 115 locations in the six states of the
USA distributed as follow: IL–Illinois (24), IN–Indiana (01), NJ–New Jersey (16), NY–New York (26),
OH–Ohio (03), and PA–Pennsylvania (45).

The inter-spatial interpolation process using Bayesian modeling and computational details are given in
SI. A few salient points about the computational part are: (i) the spatial model is fitted after doing a Markov
chain Monte Carlo calculations (number of MCMC steps = 5,000, with first 1,000 as transient (burn-in)
period). (ii) The spatial process is then extracted from the model for all 115 locations. (iii) The median of
the spatial process, calculated from the (5000 − 1000 =) 4000 MCMC samples of the spatial process, is
reported. (iv) The median spatial process is then interpolated/kriged to 200 × 200 block grid points, i.e.,
40,000 grid points, as plotted in figures 4(a) and (b).

Figures 4(a)–(f) show the interpolated spatial processes, correlation matrices and emerging spectra of
daily maximum 8 h average ozone concentration data. The plots of the interpolated spatial processes in
200 × 200 grid points over six states are shown in figure 4(a) for January 2014 and figure 4(b) for
September 2012, respectively. The interpolated values of spatial process for January are seen in figure 4(a) to
have lower mean (∼44.90 ± 1.03, as shown in the inset), with a very steep gradient of the contour lines that
implies there is less spatio-temporal correlation in the time-series for 115 stations; however, for September
(see figure 4(b)), the mean is much higher (∼62.96 ± 0.61, as shown in inset) with the gradient of the
contour lines changing very little that implies high spatio-temporal correlation across stations over
extended regions. Figures 4(c) and (d) show the plots of 30 days epoch correlation-matrices from data of
115 ozone stations, confirming the low and high mean correlations in January and September, respectively.
Figures 4(e) and (f) show the plots of eigen spectra and emerging spectra (insets) generated by the power
mapping with M = 30 days and ε = 0.01, for January and September, respectively. Figure 4(e) shows the
eigen spectrum of the correlation matrix of non-critical (normal) period (January), with the maximum
eigenvalue λmax = 17.494 (not plotted). Inset shows the emerging spectrum generated using power
mapping (ε = 0.01) is deformed semi-circular, with the smallest eigenvalue λmin = −0.004. Figure 4(f)
shows the eigen spectrum of the correlation matrix of a critical period (September) correlation matrix, with
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Figure 4. Daily maximum 8 h average ozone concentration data: interpolated spatial processes, and correlation matrices in six
states of the USA. Plots of the interpolated spatial process in 200 × 200 grid points over six states, in: (a) January 2014 and (b)
September 2012, respectively. In January(a), the interpolated values of spatial process are seen to have lower mean
(∼44.90 ± 1.03, in inset), with the gradient of the contour lines very steep that implies that there is less spatio-temporal
correlation in the time-series for 115 stations; however, for September (b), the mean is much higher (∼62.96 ± 0.61, in inset)
with the gradient of the contour lines changing very little that implies high spatio-temporal correlation across stations over
extended regions. (c) And (d) plots of short time-epoch cross-correlation matrices from data of 115 ozone stations, confirming
the low and high mean correlations in January and September, respectively. (e) And (f) plots of eigen spectra and emerging
spectra generated by the power mapping with M = 30 days and ε = 0.01, for January and September, respectively. The map and
latitude-longitude details are given in SI.

the maximum eigenvalue λmax = 50.015 (not plotted). Inset shows the emerging spectrum using power
mapping (ε = 0.01), which is heavy-tailed Lorentzian-like, with the smallest eigenvalue λmin = −0.007.

Figure 5(a) shows the evolution of the emerging spectra from distorted semi-circle (non-critical period)
to Lorenztian-like shape (critical period) with time. Figure 5(b) displays the variation of spectral entropy
SES, which reflects the shape of the emerging spectra: high (e.g., January 2014), when the shape resembles
Wigner’s semi-circle distribution (red dash) and low (e.g., September 2012), when the shape is
Lorentzian-like. However, in ozone system, the mean correlation is never too high (� 0.35) and the
Lorentzian-like peaks are low with tails less fat (compared to financial markets in figure 3), indicating the
fact that the system never approaches critical state!

It is interesting to note that the smallest eigenvalue λmin of the emerging spectra for the environmental
ozone neither shows rapid fluctuations nor large changes as compared to market crashes in the financial
market. Also, note that the relative changes in the maximum eigenvalue λmax is similar for both the cases,
whereas for smallest eigenvalues λmin it is much bigger during the market crash.
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Figure 5. Evolution of emerging spectra and spectral entropy in six states of the USA. (a) Evolution of the emerging spectra from
distorted semi-circular (non-critical period) to Lorenztian-like (critical period) with time. (b) The spectral entropy SES reflects
the shape of the emerging spectra: high (e.g., January 2014), when the shape resembles semi-circular Wigner distribution (similar
to WOE in red dash) and low (e.g., September 2012), when the shape is Lorentzian-like.

3. Discussions and summary

In summary, our study of the statistical properties of the emerging spectra illustrates for the first time that
the shape of the emerging spectrum (captured by the spectral entropy) reflects the instability in a complex
system. Also, the smallest eigenvalues of the emerging spectrum also contain significant information about
the system’s correlation structure. We used the emerging spectral entropy SES, to quantify the shape of the
emerging spectrum. When the system changed from normal to critical periods, the shape (distribution) of
the emerging spectra changed from distorted semi-circular to heavy-tailed Lorentzian-like; the value of SES

changed from high (normal) to low (critical). In each case, we took the mean SES for WOE of equivalent
size N, as benchmark. As expected, the spectral entropy SES never goes above this benchmark. For the
financial market, we found that the SES was undefined (indicated by pink vertical line) for the epoch which
corresponds to a crash. For ozone data SES is always defined. We found that we could retrieve all the major
crashes as given in table 1. We also found a few extra instabilities or crashes (the false-positives), for which
we could not get any information from internet sources (see table S4 in the supplementary information). In
the financial market context, a striking and far reaching result found was that in certain instabilities/crashes
the smallest eigenvalue of the emerging spectrum was positively correlated with the largest eigenvalue (and
thus with the mean market correlation) rather than just a trivial anti-correlation. We further ran a linear
regression model for the mean market cross-correlation μ(τ) as function of the time-lagged smallest
eigenvalue λmin(τ − 1), and found that the two variables have statistically significant correlation except
during bubbles/anomalies, implying that an indicator function exists for bubbles which could signal a
precursor to market catastrophe. It may be noted that we are interested in the time evolution of the
statistical significance (measured by t-value) of the correlation between the variables, μ and λmin(τ − 1), and
not the predicted values per se. The proposed regression model can be used for short term forecasting of
market instability in a situation like the ongoing COVID-19. We would have to develop a thorough
back-testing strategy (or out-of-sample testing strategy) for such forecasting models. However, these are
beyond the scope of the present paper.

We also observed a lead-lag effect of the crashes across the globe in terms of the behavior of λmin in
various markets (to be reported elsewhere). These features could shed light on detection of market
anomalies/instabilities and designing appropriate market strategies, etc. In ozone system, the mean
correlation is never too high (� 0.35) (see SI) and the Lorentzian-like peaks are low with less fat tails, which
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allow the SES to be well defined (compared to financial markets in figure 3), indicating the fact that the
system never approaches critical state. But the emerging spectral entropy does have high value (e.g., January
2014), when the shape resembles Wigner’s semi-circle distribution (red dash) and low value (e.g.,
September 2012), when the shape is Lorentzian-like. So, it can indicate periods which have high variability
(less mean correlation) and low variability (less mean correlation), in a computationally less intensive way,
as compared to Bayesian spatial interpolation methods using MCMC.

In our proposed method, the only two parameters that can be varied are epoch size M and distortion
parameter ε, which we have studied in details computationally with empirical and surrogate data in
references [19, 45]. We found that the SES is not very sensitive to small values of the distortion parameter ε
(see figure S7 in the supplementary information). Therefore, our method to identify and characterize
critical periods or instabilities is very simple, computationally cheap, and general (without any arbitrary
threshold). Further, we may mention that power mapping reduces the noise and spurious signals quite a bit
(for large ε, as confirmed and reported in [19]). Using different choices of parameters (like window size,
shift of windows, distortion parameter) we have observed that the fluctuations still manifest, and so in a
sense they are independent of the arbitrariness in the choice of parameters. Using other techniques (see [19,
74]) we have confirmed that the financial markets actually have become very volatile (with increasing
number of sizable fluctuations), especially after the year 2002 in USA and 1990 in Japan. As mentioned
earlier, in the history of financial crashes, not all cases of sizable fluctuations are recorded as market crashes,
even though these correlation matrices bear similar signatures of crashes.

In conclusion, we note that the behavior of the spatial correlations of ozone pollutant have interesting
and important properties that may help the policy makers on providing risk assessment decisions. On the
other hand, it does not display the catastrophic instabilities as seen in financial markets. The new quantities
discussed here allow detection and further characterization in simple numerical terms that was not
previously available. Thus, these results are certainly of deep significance for the understanding of critical
behavior in complex systems and risk management, but beyond that open a new window to the exploration
of other complex systems that display catastrophic instabilities.
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